HTME

COURSE OVERVIEW

DE0364 : Artificial Lift -PCP-ESP-SRP-Gas Lift
Artificial Lift -PCP-ESP-SRP-Gas Lift
OVERVIEW
COURSE TITLE:DE0364 : Artificial Lift -PCP-ESP-SRP-Gas Lift
COURSE DATE:Mar 03 - Mar 07 2024
DURATION:5 Days
INSTRUCTOR:Mr. Victor Saran
VENUE:Doha, Qatar
COURSE FEE:$ 8500
Request For Course Outline
OTHER SCHEDULED DATES

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulator. Most of the world?s oil wells are placed on some kind of artificial lift, the most significant of which are sucker-rod pumping, gas lifting, and electrical submersible pumping. Production engineers are required to design and operate these installations at their peak efficiencies so as to reach a maximum of profit. To achieve this goal, a perfect understanding of the design of the different lift methods, as well as working skills in the ways ensuring optimum production condition is necessary. This course provides basic knowledge of Artificial Lift. Review of fluid properties, multiphase flow regimes and all lifting methods: rod pumps, progressive cavity pumps (PCP), gas lift and electrical submersible pumps (ESP), discussion of alternate deployments and multi-sensor applications for surveillance and optimization. Strategies and best practices for field production optimization are discussed. The effectiveness for NODAL systems analysis for lifting performance optimization is demonstrated. Workshop format with presentations, discussions and hands-on exercises.The course first provides an overview of well-performance evaluation leading to determination of well conditions necessitating application of artificial lift. The various types of artificial lift systems along with their selection criteria are then presented. The theoretical and practical aspects of the most important artificial lift methods will be covered, so that at the end of the course the participants will have a sound knowledge of the theory underlying each method as well as an abroad view of the relative advantages, disadvantages, niche of applications and limitations of each artificial lift system. The course integrates lectures with hands-on exercises. Participants of this course will work with software that allows them to design and analyze artificial lift designs, which will improve performance and results in higher production rates and/or reduced operating costs. Participants will also learn how to design and troubleshoot rod pumping, continuous gas lift and ESP systems. The course also covers other methods such as PCP, plunger lift, jet pump, hydraulic pump and intermittent gas lift. Participants are expected to gain experience in solving problems by hand and also by using advanced computer programs. Troubleshooting is an important part of artificial lift operations which will be illustrated in the course covering several typical surveillance problems to be solved.

link to course overview PDF

TRAINING METHODOLOGY

This interactive training course includes the following training methodologies:

Lectures
Workshops & Work Presentations
Case Studies & Practical Exercises
Videos, Software & Simulators

In an unlikely event, the course instructor may modify the above training methodology for technical reasons.

VIRTUAL TRAINING (IF APPLICABLE)

If this course is delivered online as a Virtual Training, the following limitations will be applicable:

Certificates:Only soft copy certificates will be issued
Training Materials:Only soft copy materials will be issued
Training Methodology:80% theory, 20% practical
Training Program:4 hours per day, from 09:30 to 13:30

RELATED COURSES

Integrated Petrophysics for Reservoir Characterisation

DE0384 : Integrated Petrophysics for Reservoir Characterisation

PTA/RTA Advanced

DE0172 : PTA/RTA Advanced

Fracturing of Vertical and Horizontal Wells

DE0379 : Fracturing of Vertical and Horizontal Wells

Screening of Oil Reservoirs for Enhanced Oil Recovery

DE0500 : Screening of Oil Reservoirs for Enhanced Oil Recovery