

COURSE OVERVIEW IE0273 Controllers & Control Loops

Course Title

Controllers & Control Loops

Course Date/Venue

November 10-14, 2024/Markab Meeting Room, Al Bandar Rotana – Dubai Creek, Dubai, UAE

Course Reference IE0273

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

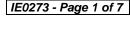
This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art simulators.

This course is designed to provide an introduction to process control to engineers and other technical staff. It teaches the base fundamentals, as well as open and closed loop tuning methods. The course is developed with field tuning in mind, not control design.

The course will discuss the control fundamentals and terminology including the principles, control loop as well as the various types and right selection of control valve and describes the process control methods and characteristics of control valve.

It illustrates the different tuning rules available and explains the fundamentals of control systems, proper tuning of PID controllers, the concepts and application of feed forward control, auto tuning and new developments and troubleshooting tuning.

The various types of control valves, actuators and valve selection will also be discussed during the course.



Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a basic knowledge on process controller, control loop and PID tuning
- Discuss the control fundamentals and terminology including the principles, control loop as well as the various types and right selection of control valve
- Describe the process control methods and characteristics of control valve
- Illustrate the different tuning rules available and explain the fundamentals of control systems
- Demonstrate the proper tuning of PID controllers and the concepts and application of feed forward control
- Identify auto tuning and new developments and employ good practices and troubleshooting tuning
- Discuss the various types of control valves, actuators and valve selection

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of process controller, control loop & valve tuning for engineers and other technical staff who are willing to learn more about single loop controllers, PID and tuning. The course explains the essence of feedback control without going in-depth into math.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

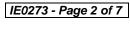
30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.



Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

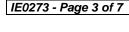
Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation


Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Barry Pretorius is a Senior Instrumentation Engineer with almost 45 years of extensive experience within the Oil, Gas, Petrochemical, Refinery & Power industries. His expertise widely covers in the areas of Distributed Control System (DCS), DCS Operations & Techniques, Plant Control and Protection Systems, Process Control & Instrumentation, Cascade Control Loops, Split-Range Control Loops, Capacity Control & Other Advanced Control Schemes, Safety Instrumented Systems, Plant Automation Operations & Maintenance, Programmable Logic Controller

(PLC), Siemens PLC Simatic S7-400/S7-300/S7-200, PLC & SCADA for Automation & Process Control, Artificial Intelligence, Allen Bradley PLC Programing and Hardware Trouble Shooting, Schneider SCADA System, Wonder Ware, Emerson, Honeywell, Honeywell Safety Manager PLC, Yokogawa, Advanced DCS Yokogawa, Endress & Hauser, Field Commissioning and Start up Testing Pre Operations, System Factory Acceptance Test (FAT), FactoryLink ECS, Modicon 484, Rockwell Automation, System Site Acceptance Test (SAT), SCADA HMI & PLC Control Logic, Cyber Security Practitioner, Cyber Security of Industrial Control System, IT Cyber Security Best Practices, Cybersecurity Fundamentals, Ethical Hacking & Penetration Testing, Cybersecurity Risk Management, Cybersecurity Threat Intelligence, OT Whitelisting for Better Industrial Control System Defense, NESA Standard and Compliance Workshop, OT, Cyber Attacks Awareness - Malware/Ransom Ware / Virus /Trojan/ Philsing, Information Security Manager, Security System Installation and Maintenance, Implementation, Systems Testing, Commissioning and Startup, Foxboro DCS & Triconics, SIS Systems, Advanced DC Drives, Motion Control, Hydraulics, Pneumatics and Control Systems Engineering, Electrical & Automation Control Systems, HV/MV Switchgear, LV & MV Switchgears & Circuit Breakers, High Voltage Electrical Safety, LV & HV Electrical System, HV Equipment Inspection & Maintenance, LV Distribution Switchgear & Equipment, Electrical Safety, Electrical Maintenance, Transformers, Medium & High Voltage Equipment, Circuit Breakers, Cable & Overhead Line Troubleshooting & Maintenance, Electrical Drawing & Schematics, Voltage Distribution, Power Distribution, Filters, Automation System, Electrical Variable Speed Drives, Power Systems, Power Generation, Diesel Generators, Power Stations, Uninterruptible Power Systems (UPS), Battery Chargers, AC & DC Transmission, CCTV Installation, Data & Fire Alarm System, Evacuation Systems and Electrical Motors & Variable Speed Drives, & Control of Electrical and Electronic devices.

During Mr. Pretorius's career life, he has gained his practical experience through several significant positions and dedication as the Technical Director, Automation System's Software Manager, Site Manager, Senior Lead Technical Analyst, Project Team Leader, Automation Team Leader, Automation System's Senior Project Engineer, Senior Project & Commissioning Engineer, Senior Instrumentation & Control Engineer, Project Engineer, Pre-Operations Startup Engineer, PLC Specialist, Radio Technician, A.T.E Technician and Senior Instructor/Trainer from various companies like the ADNOC Sour Gas, Ras Al Khair Aluminum Smelter, Johnson Matthey Pty. Ltd, Craigcor Engineering, Unitronics South Africa Pty (Ltd), Bridgestone/Firestone South Africa Pty (Ltd) and South African Defense Force.

Mr. Pretorius's has a **Bachelor of Technology** in **Electrical Engineering** (**Heavy Current**). Further, he is a **Certified Instructor/Trainer**, a **Certified Internal Verifier/Assessor/Trainer** by the **Institute of Leadership & Management** (**ILM**), received numerous awards from various institutions and delivered numerous trainings, courses, workshops, seminars and conferences internationally.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Sunday, 10 th of November 2024
--------	---

Day I.	Sunday, 10 Of November 2024
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Control Fundamentals
0030 - 0930	Terminology ● Principles of Control ● Basic Control Loop
0930 - 0945	Break
0945 - 1100	Control Fundamentals (cont'd)
0943 - 1100	Advanced Control Loop ● Control Algorithm ● Control System
	Control Valve Types
1100 - 1215	Butterfly • Eccentric • Rotary Plug • Ball • Plug • Linear Valves •
	Globe ● Cage ● Double Port
1215 - 1230	Break
1230 - 1420	Control Valve Types (cont'd)
1230 - 1420	How to Select the Right Valve?
1420 - 1430	Recap
1430	Lunch & End of Day One
	1 = = = = y =

Day 2: Monday, 11th of November 2024

Duy Z.	monday, 11 Of November 2024
	Process Control Methods
0730 - 0930	Open Loop • Process Behaviour • Time Lags • Selection of Type of
	Controller • Proportional
0930 - 0945	Break
0945 – 1100	Process Control Methods (cont'd)
	Integral • Derivative • Feedback • Cascade • Ratio • Feed Forward
1100 – 1215	Control Valve Characteristics
1100 - 1215	Selection of Flow Characteristics ● Sizing Steps ● Classification
1215 - 1230	Break
1230 - 1420	Control Valve
	Cavitation • Flashing • Noise
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3: Tuesday, 12th of November 2024

0730 - 0930	Different Tuning Rules Available
	Overshoot • Lambda Tuning • Trial Tuning
0930 - 0945	Break
0945 – 1100	Different Tuning Rules Available
	Cohen Coon Tuning • Process Controlability • Suggestions & Rules of
	Thumb
1100 – 1215	Fundamentals of Control Systems
1100 - 1215	On-Off Control • Cascade • Ratio • FF • FB
1215 – 1230	Break

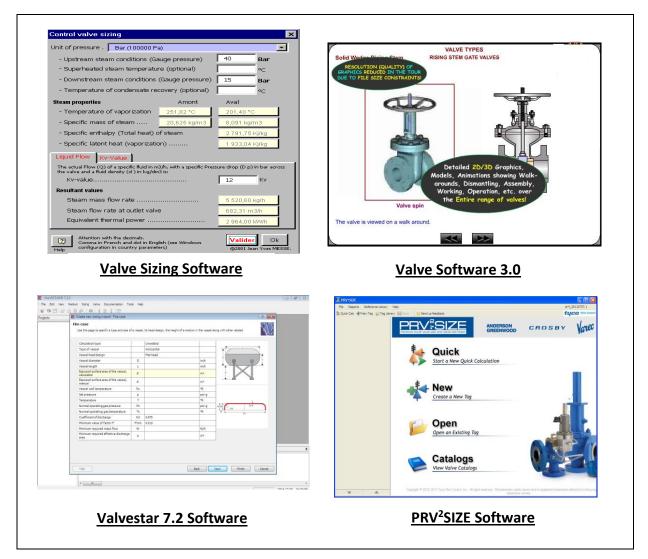
1230 – 1420	Fundamentals of Control Systems (cont'd)
1230 - 1420	Prop. Band ● Integral ● Derivative ● Direct/Reverse
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4: Wednesday, 13th of November 2024

Duy 4.	reduceday, to of horember zez-
0730 - 0930	Tuning of PID Controllers
0700 0000	Open Loop • Ziegler Nichols
0930 - 0945	Break
0945 – 1100	Tuning of PID Controllers (cont'd)
0343 - 1100	Continuing Cycling Method ● Response Lags ● Closed Loop Control
1100 – 1215	VIDEO Presentation
1100 - 1213	Control Tuning
1215 - 1230	Break
1230 – 1420	Concepts & Application of Feed Forward Control
1420 – 1430	Recap
1430	Lunch & End of Day Four

Thursday, 14th of November 2024 Day 5:

Day J.	Thursday, 14 Or November 2024
0730 - 0930	Auto Tuning & New Developments
0930 - 0945	Break
0945 – 1100	Good Practices & Troubleshooting Tuning
1100 – 1215	Good Practices & Troubleshooting Tuning (cont'd)
1215 – 1230	Break
1230 - 1345	Types of Control Valves, Actuators & Valve Selection
1345 – 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course



Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using our state-of-the-art simulators "Valve Sizing Software", "Valve Software 3.0", "Valvestar 7.2 Software" and "PRV2SIZE Software".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

