

COURSE OVERVIEW RE0921-4D KPI in Maintenance & Reliability Management

Course Title

KPI in Maintenance & Reliability Management

Course Date/Venue

November 18-21, 2024/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

CEUS

Course Reference RE0921-4D

Course Duration/Credits Four days/2.4 CEUs/24 PDHs

Course Description

This course is designed to provide participants with a detailed and up-to-date overview of KPI in Maintenance & Reliability Management. It covers the maintenance and reliability best practices in the industry; the asset management and its importance; the purpose and role of KPIs in business performance management; the KPIs with corporate strategy and the types of KPIs in maintenance and reliability; the specific KPIs for the petroleum industry and the critical touchpoints for KPI tracking; the asset life cycle, data collection and management; and the tools and systems for data management, data integrity and validation.

Further, the course will also discuss the smart targets for maintenance and reliability; benchmarking and customizing targets for different levels of the organization; the KPIs for maintenance strategies, resource and work management; the cost control, maintenance budgets, cost tracking, performance reporting and visualization; the principles of reliability engineering and their impact on maintenance strategies; the risks in maintenance and reliability; the risk mitigation strategies and associated KPIs; and the asset reliability KPIs condition monitoring and predictive maintenance.

RE0921-4D - Page 1 of 9

RE0921-4D-11-24|Rev.06|15 July 2024

During this interactive course, participants will learn the root cause analysis techniques and tracking improvements and performance after RCA implementation; the KPIs with corporate strategy, advanced data analytics for KPI enhancement and continuous improvement; the health, safety and environment (HSE) considerations in KPI selection; the organizational change when implementing new KPIs; the employee engagement and KPI ownership; the KPI review and evaluation techniques; the feedback loops and KPI refinement; the KPIs to reflect changes in technology and business processes; and avoiding common pitfalls in KPI tracking and implementation.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -

- Apply and gain a comprehensive knowledge on KPI in maintenance and reliability management
- Carryout maintenance and reliability best practices in the industry and discuss asset management and its importance
- Discuss the purpose and role of KPIs in business performance management and align KPIs with corporate strategy
- Identify the types of KPIs in maintenance and reliability including the specific KPIs for the petroleum industry
- Identify critical touchpoints for KPI tracking and illustrate asset life cycle
- Carryout data collection and management, tools and systems for data management and data integrity and validation
- Set smart targets for maintenance and reliability, apply benchmarking and customize targets for different levels of the organization
- Employ KPIs for maintenance strategies, resource and work management, cost control, maintenance budgets and cost tracking, performance reporting and visualization
- Discuss the principles of reliability engineering and their impact on maintenance strategies
- Identify and evaluate risks in maintenance and reliability and apply risk mitigation strategies and associated KPIs
- Apply asset reliability KPIs condition monitoring and predictive maintenance
- Carryout root cause analysis techniques as well as track improvements and performance after RCA implementation
- Integrate KPIs with corporate strategy and apply advanced data analytics for KPI enhancement and continuous improvement
- Discuss health, safety and environment (HSE) considerations in KPI selection and sustainability KPIs and their relevance to the company

RE0921-4D - Page 2 of 9 RE0921-4D-11-24|Rev.06|15 July 2024

- Manage organizational change when implementing new KPIs and assess employee engagement and KPI ownership
- Implement KPI review and evaluation techniques including feedback loops and KPI refinement
- Update KPIs to reflect changes in technology and business processes and avoid common pitfalls in KPI tracking and implementation

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (**H-STK**[®]). The **H-STK**[®] consists of a comprehensive set of technical content which includes **electronic version** of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of KPI in maintenance and reliability management for maintenance, engineering and operations personnel involved in improving reliability, availability, condition monitoring and maintainability of process equipment and systems.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

RE0921-4D - Page 3 of 9

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or **24 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

RE0921-4D - Page 4 of 9

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Craig Nilsen, CMRP, CRCMP, is a Senior Maintenance & Reliability Engineer with over 25 years of extensive experience within the Oil & Gas, Refinery and Petrochemical industries. His wide expertise includes Maintenance Planning & Scheduling, Maintenance Planning Process, Maintenance Shutdown & Turnaround, Maintenance Audit Best Practices, Maintenance & Reliability Management, Reliability Engineering, Maintenance & Reliability Best Practices, Reliability, Availability & Maintainability

Cause Analysis, Maintenance Process, **Reliability-Centered** (**RAM**), Root Maintenance (RCM), Reliability Engineering Analysis (RE), Root Cause Analysis (RCA), Asset Integrity Management (AIM), Reactive & Proactive Maintenance, Maintenance Process, Work Task Prioritization, Condition Monitoring, Mechanical Engineering, Mechanical Manufacturing Engineering, Mechanical Engineering Design, Electro Technology, Maintenance Planning, Spare Parts Planning & Inventory Management, Computerized Maintenance Management Systems (CMMS), Process Plant Shutdown & Turnaround, Maintenance Optimization & Best Practices, Reliability Centered Maintenance Principles & Application, Efficient Shutdowns, Turnaround & Outages, Process Plant Shutdown, Turnaround & Troubleshooting, Shutdown & Turnaround Management, Optimizing Equipment Maintenance & Replacement Decisions, Maintenance Management & Cost Control, Preventive & Predictive Maintenance, Effective Reliability Maintenance & Superior Maintenance Strategies, Integrity & Asset Management, Total Plant Reliability Maintenance, Vibration Measurement, Spare Parts & Materials Management, Mechanical & **Rotating Equipment** Troubleshooting & Maintenance, Rotating Equipment Reliability Optimization, Laser Alignment, Thermography, Risk Assessment, Legal Liability, Construction Regulations, Machine Vibration Analysis, Bag Filters Operation & Troubleshooting, Blower & Fan, Pumps, Valves, Bearings & Lubrication, Mechanical Seals, Mechanical Equipment Maintenance, Gearboxes, Shaft Alignment, Rotating Equipment, Preventive & Predictive Maintenance, Spare Management and Network Analysis.

During his career life, Mr. Nilsen gained his practical and field experience through his various significant positions and dedication as the Maintenance Engineer, Repair Shop Supervisor, Maintenance & Reliability Specialist, Maintenance Planner/Reliability Specialist, Senior Maintenance Planner/Condition Monitoring Specialist, Supply Chain Maintenance Planner, Technical Advisor, Senior Trainer/Lecturer and Fitter & Turner for Algorax (Pty) Limited.

Mr. Nilsen has a **National Higher Diploma** in **Mechanical Engineering**. Further, he is a **Certified Instructor/Trainer**, a **Certified Maintenance** and **Reliability Professional** (**CMRP**) from the Society of Maintenance & Reliability Professionals (**SMRP**), a **Certified Reliability Centered Management Professional** (**CRCMP**) from the International Organization of RCM Professionals (**IORCMP**) and a **Qualified Fitter & Turner**. Moreover, he is an active member of the Society of Maintenance and Reliability Professionals (**SMRP**) and the South African Asset Management Association (**SAMA**). He has further delivered numerous trainings, courses, seminars, workshops and conference internationally.

RE0921-4D - Page 5 of 9

Course Fee

US\$ 4,500 per Delegate + VAT. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day

<u>Course Program</u> The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 18 th of November 2024
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 – 0900	<i>Introduction to Maintenance & Reliability</i> Defining Maintenance & Reliability within the Petroleum Sector • Best Practices in the Industry • Introduction to Asset Management & Its Importance
0900 - 0930	Fundamentals to KPIsDefinition & Purpose of KPIs • Role of KPIs in Business PerformanceManagement • Aligning KPIs with Corporate Strategy
0930 - 0945	Break
0945 – 1100	Types of KPIs in Maintenance & ReliabilityLeading Versus Lagging Indicators • Qualitative Versus QuantitativeIndicators • Specific KPIs for the Petroleum Industry
1100 – 1215	Maintenance & Reliability Value ChainOverview of the Maintenance & Reliability Value Chain • Identifying CriticalTouchpoints for KPI Tracking • Introduction to the Asset Life Cycle
1215 – 1230	Break
1230 - 1300	Data Collection & ManagementImportance of Accurate Data Collection • Tools & Systems for DataManagement (CMMS, EAM, Etc.) • Data Integrity & Validation
1300 - 1330	Setting KPI Targets How to Set SMART Targets for Maintenance & Reliability • Benchmarking & Industry Standards • Customizing Targets for Different Levels of the Organization
1330 - 1420	KPIs for Maintenance StrategiesPreventive Versus Predictive Maintenance • Reliability-Centered Maintenance(RCM) KPIs • Total Productive Maintenance (TPM) KPIs
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One
Day 2.	Tuesday 19 th of November 2024

Day 2:	Tuesday, 19 th of November 2024
	Resource & Work Management KPIs
0730 – 0830	Work Order Management Metrics • Resource Utilization & Efficiency • Spare
	Parts Inventory Management KPIs
	Cost Control & Financial KPIs
0830 - 0930	<i>Understanding Maintenance Budgets & Cost Tracking</i> • <i>Cost-Benefit Analysis</i>
	of Maintenance Activities • Life Cycle Cost & Return on Assets
0930 - 0945	Break

RE0921-4D - Page 6 of 9

	Performance Reporting & Visualization
0945 - 1100	Creating Effective Performance Dashboards • Visualizing Data for Decision-
	Making • Reporting Techniques & Frequency
	Case Study Analysis: Successful KPI Implementation
1100 – 1215	Analysis of a Successful KPI Implementation in the Petroleum Industry •
	Group Discussion on Key Learning Points
1215 - 1230	Break
1215 1250	Dreak Drinciples of Reliability Engineering
1230 1330	Introduction to Reliability Engineering in the Detroloum Inductry • Reliability
1230 - 1330	KDIc & their Impact on Maintenance Strategies
	RF15 6 their Impact on Maintenance Strategies
1200 1200	Kisk Munugement & Kris Identificing & Freducting Disks in Maintenance & Polishility • Disk
1300 - 1300	Mitigation Strategies St Accepted VDIs
	Asset Kellability KPIs
1300 - 1420	Mean Time Between Failures (MTBF) & Other Reliability Metrics • Asset
	Utilization & Availability Metrics • Performance Degradation & Life
	Expectancy Modeling
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two
Day 3:	Wednesday, 20 th of November 2024
	Condition Monitoring & Predictive Maintenance KPIs
	Vibration Analysis, Thermography, Oil Analysis, etc. • Setting KPIs for
0/30 - 0830	Predictive Maintenance Efficiency • Integrating Condition Monitoring Data
	with KPI Tracking
	Root Cause Analysis (RCA) & KPIs
0830 - 0930	RCA Techniques & their Impact on Maintenance KPIs • Tracking
	Improvements & Performance after RCA Implementation
0930 - 0945	Break
	Reliability-Centered Maintenance (RCM) Case Studies
0945 - 1100	Detailed Case Studies of RCM Implementation in the Petroleum Industry •
	Group Discussion on Lessons Learned & Potential Improvements
	Integration of KPIs with Cornorate Strategy
1100 - 1215	Function of Relie with Corporate Schulegy Function Alignment of Maintenance & Reliability KPIs with Company Goals
1100 - 1215	Role of Leadershin in KPI Integration
1215 _ 1230	Reak
1210 - 1200	Advanced Data Analytics for VDI Enhancement
1220 1330	Introduction to Big Data & Anglutice in Maintenance • Predictize Anglutice &
1230 - 1330	Introduction to big Duta & Analytics in Muntenance - Fredictive Analytics & Machine Learning for Derformance Improvement
1200 1420	Continuous Improvement & KPIs
1300 - 1420	Kaizen & Continuous Improvement in the Context of KPIs • Plan-Do-Check-
	Act (PDCA) Cycle for KPI Management
	Sustainability & HSE KPIs
1420 – 1430	Health, Safety, & Environment (HSE) Considerations in KPI Selection •
	Sustainability KPIs & their Relevance to Your Company
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
1720 - 1400	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three
	💷 🔊 💦 🙀 🖓 🔤 🖓 🔤 🖉

RE0921-4D-11-24|Rev.06|15 July 2024

Day 4	Thursday, 21 st of November 2024
	Change Management & KPIs
0730 - 0930	Managing Organizational Change when Implementing New KPIs • Employee
	Engagement & KPI Ownership
0930 - 0945	Break
	Workshop: Developing a KPI Improvement Plan
0945 – 1030	Participants Develop an Improvement Plan for a Specific KPI • Group
	Presentations & Feedback Session
	KPI Review & Evaluation Techniques
1030 - 1115	Periodic Review Processes for KPI Effectiveness • Evaluation Techniques to
	Measure KPI Impact
	Feedback Loops & KPI Refinement
1115 - 1215	Establishing Feedback Mechanisms for Continuous KPI Refinement • Case
	Study: How Feedback Improved a KPI System
1215 – 1230	Break
	Maintaining KPI Relevance Over Time
1230 – 1300	Updating KPIs to Reflect Changes in Technology & Business Processes • Case
	Studies of KPI Evolution in Response to Industry Trends
	KPI Best Practices Roundup
1300 - 1345	Summary of Best Practices in KPI Management • Avoiding Common Pitfalls
	in KPI Tracking & Implementation
	Course Conclusion
1345 – 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

RE0921-4D - Page 8 of 9

RE0921-4D-11-24|Rev.06|15 July 2024

Simulator (Hands-on Practical Sessions)

Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the state-of-the-art simulator "iLearnVibration".

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

RE0921-4D - Page 9 of 9

