

COURSE OVERVIEW ME0615-4D Pumps & Compressors

Operation, Maintenance & Troubleshooting

Course Title

Pumps & Compressors: *Maintenance & Troubleshooting*

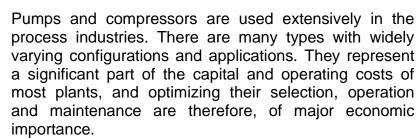
Operation,

Course Reference

ME0615-4D

Course Duration/Credits

Four days/2.4 CEUs/24 PDHs


Course Date/Venue

Session(s)	Date	Venue	
1	August 26-29, 2024	Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE	
2	November 18-21, 2024	Jubail Hall, Signature Al Khobar Hotel, Al Khobar, KSA	

simulators.

Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-of-the-art

The course deals with efficiencies, operating characteristics, reliability, maintenance and troubleshooting implications of pumps and compressors.

The course will cover the operating principles of pumps and compressors, specifications, thermodynamics, effects of efficiency on operating costs, energy usage, and effect on plant costs, materials of construction, selection, troubleshooting and maintenance.

The course will also cover plant run-length extension surveys, organizing for successful turnarounds and ongoing reliability improvement, and preventive vs. predictive maintenance strategy decisions.

The course will provide the participant with a basic as well as advanced pump and compressor technology knowledge, inventory required to successfully select, apply, operate, troubleshoot and maintain pumps and compressors.

At the end of this course, participants will have gained a thorough understanding of the various types of pumps and compressors available to most industrial users, including sizing and application criteria, maintainability, reliability, vulnerability and troubleshooting issues. Participants will learn simple techniques and short-cut methods of machinery sizing and selection. This replaces tedious hand or other methods of calculation and will serve as a fast way to arrive at sensitivity or influence of parameter changes on equipment performance.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply systematic techniques in the operation, maintenance and troubleshooting of pumps and compressors
- Discuss the concepts of pump types and terminology and introduce the theory and operating characteristics of centrifugal pumps
- Identify the common types of compressors and the ranges of application and limitation and have an overview of centrifugal compressors including its type and function
- Recognize the principles of equipment failure patterns including its type and review the common factors of why equipment fails
- Differentiate between the different aspects of machinery corrosion and to make the correct selection of material for a given application
- Determine the basic approaches to machinery troubleshooting and troubleshoot most possible faults and failures of pumps and compressors and discover the various approaches to be considered in applying corrective actions
- Employ the principles of dry gas, packing and mechanical seals and recognize their components and functions
- Develop a good background on seal support systems including its selection strategies and other applications and explain the features of dry gas seal for centrifugal gas compressor
- Analyze and troubleshoot mechanical seal failure and identify the various maintenance & repair methods used
- Discuss the basic concept of bearing care & maintenance, bearing classification and lubrication management
- Identify the various types of couplings and recognize their purpose & function and list-down the different alignment methods used
- Recognize and implement the various preventive and predictive maintenance techniques and strategies used for pumps & compressors

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**

Who Should Attend

This course provides an overview of all significant aspects and considerations of pumps and compressors for those who are involved in the operation, maintenance and troubleshooting of such equipment. This includes rotating equipment and machinery engineers, plant and maintenance engineers and other technical staff involved in turbomachinery management, operation and maintenance. Further, it is suitable for operations, process and process unit contact, mechanical and project engineers.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or **24 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

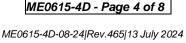
Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Attalla Ersan, PEng, MSc, BSc, is a Senior Mechanical Engineer with over 35 years of extensive experience within the Oil & Gas, Hydrocarbon and Petrochemical industries. His expertise widely covers the areas of Boiler & Steam System Management, Waste Heat Recovery, Boiler Plant Safety, Boiler Controls, Steam Distribution Systems, Steam Traps, Pollution Control, Cracked Gas Compressor, Reboilers, Selection & Operation, Boiler Inspection & Maintenance, Boiler

instrumentation & Controls, Boiler Start-up & Shutdown, Boiler Operation & Steam System Management, Boiler Water Chemistry & Treatment, Boiler Efficiency & Waste Heat Recovery, Boiler Inspection & Testing, Boiler Troubleshooting & Safety, Boiler Emissions & Pollution Control, Pumps Maintenance & Troubleshooting, Valve Maintenance, Plunger Valve, Maintenance & Reliability Best Practices, Maintenance & Reliability Management, Process Plant Operations, Process Plant Startup & Operating Procedure, Ethylene & Vinyl Chloride, Ethane Cracking Furnaces Operations, Ethylene & Polyethylene Operation, Acid Gas Treatment, Sulphur Recovery, EDC & VCM, Caustic Soda Storage, Debottlenecking, Process Operation, Safety Audits, Process Engineering, Root Cause Investigations, Pyrolysis Cracking, Gas Plant Commissioning, Loss Prevention Techniques, Occupational Hazards, Hot Tapping & Tie-Ins, Pre-Start-Up Safety Review (PSSR), Standard Operating Procedure (SOP), Emergency Operating Procedure (EOP), Permit to Work Systems (PTW), Steam Cracking, Steam Generation, Binary Fractionators Operations, Tanks Farm & Metering Station Techniques, Gas Treatment, Sulphur Recovery Process Unit Operation, Permit to Work System, Emergency Response Planning, Sulphur Unit Air Blower, Steam Turbine, Distillation Columns, Gas Treatment, Waste & Water Treatment Units, Water Meter Reading System (MMR), Utility Regulation, Best Water Equipment, Water Fittings, Water Tanks Filling Stations, Pumping Station, Water Chemistry, Water Network Design, Pumps, Compressors, Turbines, Motors, Turbo-expanders, Gears, Heat Exchanger, Hazard and Operability (HAZOP) Study, Process Hazards Analysis (PHA), HAZOP Facilitation, Loss Prevention, Consequence Analysis Application, Gas Detectors Operation, Accident/Incident Investigation (Why Tree Method), Occupational Exposure Assessment, Fire Fighting & First Aid, Environmental Management and Basic Safety Awareness. Further, he is also well-versed in Project Management, Human Resources Consultancy, Manpower Planning, Job Design & Evaluation, Recruitment, Training & Development and Leadership, Creative Problem Solving Skills, Work Ethic, Job Analysis Evaluation, Training & Development Needs, Bidding & Tendering, Technical Report Writing, Supervisory Leadership, Effective Communication Skills and Total Quality Management (TQM). He is currently the CEO of Ersan Petrokimya Teknoloji Company Limited wherein he is responsible for the design and operation of Biogas Process Plants.

During his career life, Mr. Ersan has gained his practical and field experience through his various significant positions and dedication as the Policy, Organization & Manpower Development Head, Training & Development, Head, Ethylene Plant – Pyrolysis Furnace Engineer, Production Engineer, Mechanical Engineer, Boiler Mechanic, Process Training Coordinator, Ethylene Plant Shift Supervisor, Ethylene Plant Panel & Fit Operator, Process Training & Development Coordinator, Technical Consultant, and Instructor/Trainer for Qatar Vinyl Company Limited and Qatar Petroleum Company (QAPCO).


Mr. Ersan is a Registered Professional Engineer and has a Master's degree of Education in Educational Training & Leadership and a Bachelor's degree of Petrochemical Engineering. Further, he is a Certified Instructor/Trainer and has delivered numerous trainings, courses, workshops, conferences and seminars internationally.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 4,500 per Delegate + **VAT**. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

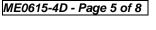
Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

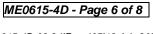
Day 1


Day I		
0730 - 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
0830 - 0930	Introduction	
	Overview of Rotating Equipment • Understanding How Equipment Works	
0930 - 0945	Break	
0045 1100	Pump Types & Terminology	
0945 – 1100	Pump Basics • Pump Terminology • Nomenclature and Definitions	
	Centrifugal Pumps Overview	
	Centrifugal Pump Theory • Operating Characteristics • Centrifugal • Pump	
1100 – 1215	Operation • Cavitation and NPSH • Minimum Continuous Safe Flow (MCSF) •	
	Types of Centrifugal Pumps • Troubleshooting and Preventive Maintenance for	
	Pumps	
1215 - 1230	Break	
	Compressor Types & Terminology	
1230 - 1330	Centrifugal • Axial • Reciprocating • Helical Screw • Ranges of Application	
	and Limitations	
	Centrifugal Compressors Overview	
1220 1420	Rotors • Balancing • Rotor Dynamics • Impellers • Casings •	
1330 – 1420	Troubleshooting and Preventive Maintenance for Compressors • Bearings • Seals:	
	Labyrinths, Oil Seals & Self Acting Gas Seals • Couplings • Controls	
1420 – 1430	Recap	
	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics	
	that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	
1430	Lunch & End of Day One	

Day 2

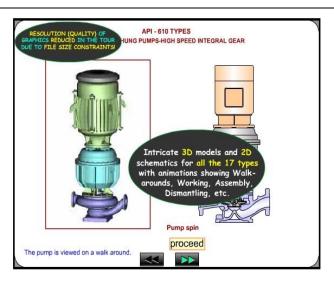
	Equipment Failure Patterns	
0730 - 0930	Materials Selection ● Types of Corrosion ● Bath-Tub Curve ● Actual Equipment	
	Failure Patterns • Actions to Minimize Failure Effect	
0930 - 0945	Break	
0945 – 1100	Basic Approaches to Machinery Troubleshooting	
	Examples from Recent Failure Incidents Attributed to Design Defects • Processing	
	and Manufacturing Deficiencies	
1100 – 1215	Case Studies	
1215 – 1230	Break	
	Troubleshooting Faults & Applying Corrective Action	
1230 – 1245	Equipment Performance Monitoring • Vibration Analysis • Fast Fault Finding •	
	Acoustical Troubleshooting • Infra-red Inspection • Oil Analysis	
1245 - 1400	Vibration Analysis DVD's	
1400 – 1415	Introduction to Dry Gas Seals	
	Principle of Operation • Materials of Construction • Manufacturing and Verification	
1415 – 1420	Case Studies	
	Recap	
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the Topics	
	that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow	
1430	Lunch & End of Day Two	

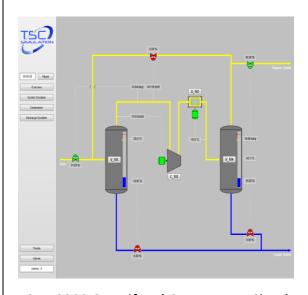
Day 3

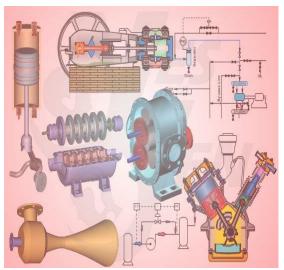

Day 3		
0730 - 0930	Packing & Mechanical Seals	
	Compression Packing • Molded (Automatic) Packing • Basic Principles of	
	Mechanical Seals • Face Materials • Secondary Seal Materials • Single	
	Mechanical Seals • Single Mechanical Seal • Flushing Plans	
0930 - 0945	Break	
0945 - 1100	Flowserve DVD	
1100 – 1215	Case Studies	
1215 – 1230	Break	
	Seal Support Systems	
1230 – 1300	Dual Sealing Systems and Flushing Plans • API 682 Reference Guide • Gas	
1230 - 1300	Barrier Seal Technology for Pumps • Support Systems for Dry Gas (Self	
	Acting) Compressor Seals • Mechanical Seal Selection Strategies	
1300 - 1330	Dry Gas Seal for Centrifugal Gas Compressors	
	Mechanical Seal Failure Analysis & Troubleshooting	
1330 - 1400	Failure Analysis • Mechanical Seal Troubleshooting • Determining Leakage	
	Rates • Ascertaining Seal Stability	
1400 1420	Mechanical Seal Maintenance & Repair	
1400 – 1420	Bellows Seal Repair • Cartridge Seal Installation and Management • Seal Fa	
	Recap	
1420 – 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Topics that were Discussed Today and Advise Them of the Topics to be	
	Discussed Tomorrow	
1430	Lunch & End of Day Three	

Day 4

Duy 4		
	Bearing Care & Maintenance	
0730 – 0800	Basic Bearing Concepts • Bearing Classifications • Bearing Care and	
	Maintenance • Lubrication Management Break	
	Couplings & Alignment	
0800 - 0915	Purpose of Couplings • Types of Couplings • Alignment Methods •	
	Foundation and Grouting Guidelines	
0915 - 0930	Preventive Maintenance-Lubrication	
	Cost of Poor Lubrication • Fundamentals-Oil & Grease • Storage &	
	Handling Methods • Comparative Viscosity • Classifications	
0930 - 0945	Break	
0945 - 1200	Flowserve DVD	
1200 – 1215	Lubrication DVD	
1215 – 1230	Break	
1230 - 1345	Preventive Maintenance	
	General Philosophy • Equipment Sparing Factor and Maintenance Approach	
	Course Conclusion	
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the	
	Course Topics that were Covered During the Course	
1400 – 1415	POST-TEST	
1415 – 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	






Simulator (Hands-on Practical Sessions)

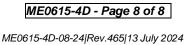
Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the simulators "Centrifugal Pumps and Troubleshooting Guide 3.0", "SIM 3300 Centrifugal Compressor" and "CBT on Compressors".

Centrifugal Pumps and Troubleshooting Guide 3.0

SIM 3300 Centrifugal Compressor Simulator

CBT on Compressors

Course Coordinator


Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

