

COURSE OVERVIEW NE0009 Applications of Solar Photovoltaic Systems

Course Title

Applications of Solar Photovoltaic Systems

Course Date/Venue

August 26-30, 2024/Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

(30 PDHS)

Course Reference

Course Duration/Credits Five days/3.0 CEUs/30 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of Applications of Solar Photovoltaic Systems. It covers the various renewable energy sources and their roles in combating climate change with a focus on solar energy's potential; the basics of solar radiation, solar PV technology and how solar panels generate electricity; the solar panels, batteries and mounting inverters. systems; the sustainability concepts and practices within the oil and gas industry; the environmental impacts of solar PV systems; the lifecycle analysis and comparison with traditional fossil fuel sources; the techniques for evaluating potential sites for solar installations; and the solar resource assessment and shading analysis.

Further, the course will also discuss the fundamentals of designing solar PV systems; the system sizing, orientation and tilt angle optimization for maximum efficiency; the regulatory landscape for solar energy, financial models for solar projects and best practices for the safe installation of solar PV systems; the solar PV with existing oil and gas infrastructure and how solar PV can power remote operations; the energy storage technologies that complement solar PV systems; the systematic strategies for monitoring the performance of solar PV systems and routine maintenance practices to ensure operational efficiency; the common technical challenges in integrating solar PV systems and potential solutions: and the technological and operational considerations.

NE0009 - Page 1 of 8

NE0008-08-24|Rev.00|12 March 2024

During this interactive course, participants will learn the environmental and economic impacts of solar PV systems over their entire lifecycle from manufacturing to disposal; the contribution of solar PV systems to reducing the carbon footprint of oil and gas operations; the solar PV market and the role of solar PV in creating sustainable supply chains; the risks associated with the adoption of solar PV systems; the global energy policies supporting renewable energy adoption; the regulatory framework affecting solar PV installations in specific regions; the role of the oil and gas sector in advocating for policies that support the transition to renewable energy; the emerging technologies in solar energy including advances in photovoltaic materials and system design; and the strategic planning within oil and gas companies for incorporating solar PV and other renewables into their energy mix.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a systematic techniques and approaches on the applications of solar photovoltaic systems
- Recognize various renewable energy sources and their roles in combating climate change with a focus on solar energy's potential
- Discuss the basics of solar radiation, solar PV technology and how solar panels generate electricity
- Identify the components that make up solar PV systems including solar panels, inverters, batteries and mounting systems
- Examine global trends in solar energy deployment and leading countries and implications for the oil and gas industry
- Apply sustainability concepts and practices within the oil and gas industry
- Analyze the environmental impacts of solar PV systems including lifecycle analysis and comparison with traditional fossil fuel sources
- Carryout techniques for evaluating potential sites for solar installations including solar resource assessment and shading analysis
- Discuss the fundamentals of designing solar PV systems including system sizing, orientation and tilt angle optimization for maximum efficiency
- Review the regulatory landscape for solar energy, financial models for solar projects and best practices for the safe installation of solar PV systems
- Integrate solar PV with existing oil and gas infrastructure and explain how solar PV can power remote operations
- Recognize energy storage technologies that complement solar PV systems and carryout systematic strategies for monitoring the performance of solar PV systems and routine maintenance practices to ensure operational efficiency
- Discuss the common technical challenges in integrating solar PV systems and potential solutions including technological and operational considerations
- Analyze the environmental and economic impacts of solar PV systems over their entire lifecycle from manufacturing to disposal
- Quantify the contribution of solar PV systems to reducing the carbon footprint of oil and gas operations

NE0009 - Page 2 of 8

- Assess the solar PV market, identify the role of solar PV in creating sustainable supply chains and manage risks associated with the adoption of solar PV systems
- Engage with stakeholders, discuss global energy policies supporting renewable energy adoption
- Review the regulatory framework affecting solar PV installations in specific regions
- Recognize the role of the oil and gas sector in advocating for policies that support the transition to renewable energy
- Explore emerging technologies in solar energy including advances in photovoltaic materials and system design
- Apply strategic planning within oil and gas companies for incorporating solar PV and other renewables into their energy mix

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes **electronic version** of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a **Tablet PC**.

Who Should Attend

This course provides an overview of all significant aspects and considerations of applications of solar photovoltaic systems for energy managers, engineers, supervisors and other technical staff involved in the renewable energy sector.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

- 30% Lectures
- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + **5% VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

NE0009 - Page 3 of 8

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

• *** *BA

BAC British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

NE0009 - Page 4 of 8 NE0008-08-24|Rev.00|12 March 2024

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Ahmed El-Sayed, PhD, MSc, BSc, is a Senior Electrical & Nuclear Engineer with over 35 years of extensive experience in the Power, Petroleum, Petrochemical and Industrial industries. He specializes in Power Systems Control, Power Systems Security, Nuclear Power Plant, Renewable Energy, Solar Energy, Biomas Energy, Biogas Energy, Thermal & Photovoltaics Energy, Nuclear

Steam Supply System, Nuclear Reactor, Energy Generation, Power Electronics, Electrical Substations, Tariff Design & Structure Analysis, PLC, SCADA, DCS, Power Generation, SIS, SIL, ESD, Alarm Management Systems, Fieldbus Systems and Fiber Optics. He is currently the Systems Control Manager of Siemens.

During his career life, Dr. Ahmed has been actively involved in different Power System and Nuclear System Activities and also in Teaching and Consulting. His vast industrial experience was honed greatly when he joined many International and National Companies such as Siemens, Electricity Authority and ACETO industries.

Dr. Ahmed has PhD, Master's & Bachelor's degree in Electrical Engineering from the University of Wisconsin Madison, USA and Ain Shams University, respectively. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/ Assessor/Trainer by the Institute of Leadership and Management (ILM), an active member of IEEE and ISA as well as numerous technical and scientific papers published internationally in the areas of Power Quality, Superconductive Magnetic Energy Storage, SMES role in Power Systems, Power System Blackout Analysis, and Intelligent Load Shedding Techniques for preventing Power System Blackouts, HV Substation Automation and Power System Stability.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 26 th of August 2024
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Overview of Renewable Energy Sources: Introduction to Various Renewable Energy Sources and their Roles in Combating Climate Change with a Focus on Solar Energy's Potential
0930 - 0945	Break
0945 – 1030	<i>Fundamentals of Solar Energy:</i> Understanding the Basics of Solar Radiation, Solar PV Technology, and How Solar Panels Generate Electricity

NE0009 - Page 5 of 8 NE0008-08-24|Rev.00|12 March 2024

1030 - 1130	Solar PV Systems Components: Detailed Overview of the Components that Make Up Solar PV Systems, including Solar Panels, Inverters, Batteries and
	Mounting Systems
1130 – 1230	Global Trends in Solar Energy: Examination of Global Trends in Solar
	Energy Deployment, including Case Studies from Leading Countries and
	Implications for the Oil & Gas Industry
1230 - 1245	Break
1245 - 1330	Sustainability in the Oil & Gas Sector: Introduction to Sustainability
	Concepts and Practices within the Oil & Gas Industry, Highlighting the
	Importance of Transitioning to Renewable Energy Sources
1330 - 1420	Environmental Impact Assessment: Understanding the Environmental
	Impacts of Solar PV Systems, including Lifecycle Analysis and Comparison
	with Traditional Fossil Fuel Sources
1420 - 1430	Recap
1430	Lunch & End of Day One

Day 2:	Tuesday, 27 th of August 2024
-	Site Assessment for Solar PV Installation: Techniques for Evaluating
0730 - 0830	Potential Sites for Solar Installations, including Solar Resource Assessment
	and Shading Analysis
	Solar PV System Design Principles: Fundamentals of Designing Solar PV
0830 - 0930	Systems, including System Sizing, Orientation, and Tilt Angle Optimization
	for Maximum Efficiency
0930 - 0945	Break
	Regulatory & Policy Framework: Overview of the Regulatory Landscape for
0945 – 1100	Solar Energy, including Permits, Incentives, and Policies Affecting Solar PV
	System Installation in the Oil & Gas Sector
	Financial Models & Incentives: Analysis of Financial Models for Solar
1100 – 1230	Projects, including Cost-Benefit Analysis, Payback Periods, and Understanding
	Government Incentives and Subsidies
1230 - 1245	Break
	Safety & Installation Standards: Best Practices for the Safe Installation of
1245 – 1330	Solar PV Systems, including Understanding National and International
	Standards and Guidelines
	Hands-on Installation Workshop: Practical Session on Installing a Small-
1330 – 1420	Scale Solar PV System, Covering Component Assembly, Wiring, and Safety
	Measures
1420 - 1430	Recap
1430	Lunch & End of Day Two

Day 3:	Wednesday, 28 th of August 2024
0730 - 0830	<i>Hybrid Energy Systems:</i> Exploring the Integration of Solar PV with Existing Oil & Gas Infrastructure, including Hybrid Systems Combining Solar with Diesel Generators
0830 - 0930	<i>Microgrids & Off-grid Solutions:</i> Understanding How Solar PV can Power Remote Operations, including the Design and Management of Microgrids for Off-Grid Installations
0930 - 0945	Break
0945 - 1100	Energy Storage Solutions: Introduction to Energy Storage Technologies that Complement Solar PV Systems, including Batteries and their Application in Smoothing Energy Supply

NE0009 - Page 6 of 8

NE0008-08-24|Rev.00|12 March 2024

1100 - 1230	Monitoring & Maintenance: Strategies for Monitoring the Performance of Solar PV Systems and Routine Maintenance Practices to Ensure Operational Efficiency
1230 – 1245	Break
1245 - 1330	<i>Case Studies:</i> Analysis of Successful Solar PV Projects within the Oil & Gas Industry, Highlighting Lessons Learned and Best Practices
1330 - 1420	Technical Challenges & Solutions: Discussion of Common Technical Challenges in Integrating Solar PV Systems and Potential Solutions, including Technological and Operational Considerations
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4:

Thursday, 29th of August 2024

<u></u>	maroday) zo or magaot zoz r
0730 - 0830	Life Cycle Analysis: Detailed Analysis of the Environmental and Economic
	Impacts of Solar PV Systems Over their entire Lifecycle, from Manufacturing
	to Disposal
0830 - 0930	Carbon Footprint Reduction: Quantifying the Contribution of Solar PV
	Systems to Reducing the Carbon Footprint of Oil & Gas Operations
0930 - 0945	Break
	Market Trends & Future Prospects: Examination of the Solar PV Market,
0945 – 1100	including Future Technology Trends and their Potential Impact on the Oil &
	Gas Industry
	Sustainable Supply Chains: Exploring the Role of Solar PV in Creating
1100 - 1230	Sustainable Supply Chains within the Oil & Gas Sector, including
	Considerations for Sourcing and Logistics
1230 - 1245	Break
	Risk Management: Identifying and Managing Risks Associated with the
1245 – 1330	Adoption of Solar PV Systems, including Technical, Financial, and Regulatory
	Risks
	Stakeholder Engagement: Strategies for Engaging Stakeholders, including
1330 - 1420	<i>Employees, Communities, and Investors, in the Transition Towards Renewable</i>
	Energy
1420 – 1430	Recap
1430	Lunch & End of Day Four

Day 5:	Friday, 30 th of August 2024
0730 - 0830	Global Energy Policies: Overview of Global Energy Policies Supporting
	Renewable Energy Adoption and their Implications for the Oil & Gas Sector
0830 - 0930	National & Local Regulations: The Regulatory Framework Affecting Solar
	PV Installations in Specific Regions, including Compliance and Reporting
	Requirements
0930 - 0945	Break
0945 - 1030	Advocacy & Public Policy: Understanding the Role of the Oil & Gas Sector
	in Advocating for Policies that Support the Transition to Renewable Energy
1030 - 1130	Innovations in Solar Technology: Exploring Emerging Technologies in Solar
	Energy, including Advances in Photovoltaic Materials and System Design
1130 - 1230	Strategic Planning for Transition: Frameworks for Strategic Planning
	within Oil & Gas Companies for Incorporating Solar PV and other Renewables
	into their Energy Mix

NE0009 - Page 7 of 8

1230 - 1245	Break
1245 - 1345	Workshop: Creating a Sustainable Transition Plan: Participants Work in Groups to Create a Strategic Plan for Integrating Solar PV Systems into their Operations, Considering Economic, Environmental, and Regulatory Aspects
1345 – 1400	Course Conclusion
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

<u>Practical Sessions</u> This practical and highly-interactive course includes real-life case studies and exercises:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

NE0009 - Page 8 of 8

NE0008-08-24|Rev.00|12 March 2024