

COURSE OVERVIEW DE0210-4D Basic Reservoir Engineering for Non-Reservoir Engineers

Course Title

Basic Reservoir Engineering for Non-Reservoir Engineers

Course Date/Venue

September 30-October 03, 2024/Al Aziziya Hall, The Proud Hotel Al Khobar, Al Khobar, KSA

(24 PDHs)

AWARD

Course Reference

Course Duration/Credits Four days/2.4 CEUs/24 PDHs

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

Oil Reservoirs have been created by complex sedimentary and diagenetic processes, and modified by a history of tectonic change. Reservoirs are complex systems on all scales. Decisions such as pumping and injection, new well placement, and drilling in an active oil field, are typical of the complex relationships between reservoir engineering and oil field/reservoir management.

Reservoir engineering is the application of scientific principles to solve issues arising during the development and production of oil and gas reservoirs. This course covers the engineering operations involved in analysing the production behaviour of oil and gas wells, including well performance engineering, reservoir aspects of well performance, restricted flow into the wellbore, rate decline analysis, and fundamentals of artificial lift.

DE0210-4D - Page 1 of 7

This course is designed to give participants a detailed overview of the fundamental reservoir engineering to better understand its practices, the required data, its interpretations, the processes and its limitations. Further, the course deals with the basic concepts of fluid flow, leading on with laminar and non-Darcy flow, including multiphase situations, oil and gas reservoirs, from fluid and rock characteristics, production injection analysis, material balance applied to oil reservoirs, immiscible displacement and natural water influx. Case studies will be use throughout the course to demonstrate concepts and real situations.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain a basic knowledge on reservoir engineering
- Discuss the PVT analysis of oil as well as production injection analysis
- Express the general & linear material balance equations applied to oil reservoirs as well as describe Darcy's law and its applications
- Describe the basic differential equation for radial flow in a porous medium as well as the well inflow equations for stabilized flow conditions
- Explain the constant terminal rate solution of the radial diffusivity equation and its application to oilwell testing
- Discuss real gas flow: gas well testing, immiscible displacement and natural water influx

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK[®]). The H-STK[®] consists of a comprehensive set of technical content which includes electronic version of the course materials conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of reservoir engineering for geologists, petrophysicists, geophysicists, petroleum engineers, production engineers and other technical staff who wants to know the fundamentals of reservoir engineering.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-ofthe-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

- 20% Practical Workshops & Work Presentations
- 30% Hands-on Practical Exercises & Case Studies
- 20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

DE0210-4D - Page 2 of 7

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **2.4 CEUs** (Continuing Education Units) or **24 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

DE0210-4D - Page 3 of 7

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Dr. Saad Aljzwe, PhD, MEng, MSc, BSc, is a **Senior Petroleum & Reservoir Engineer** with over **25 years** of practical and academic experience in the areas of **Petroleum Economic** Analysis, **Economic** Evaluation, **Petroleum Risk** Analysis & Decision Making, **Oil Agreement**, **Reserves Estimation & Uncertainty**, Oil in Place Estimation & Range of Uncertainty, **Exploration & Production** Sharing Agreements, Multidisciplinary Research, Economics &

Property Evaluation, Conventional & Unconventional Oil & Gas Reserves Estimation. Reservoir Management, Reservoir Engineering, Reservoir Performance Analysis, Oil Fields Subsurface Assessment & Forecasting, Casing Design, Drilling & Workover, PVT & Core Analysis, Production Operations, EOR/IOR, Field Development Design & Evaluation, Miscible Gas Injection (CO2 Injection) Design & Evaluation, Special Core Analysis & Formation Evaluation, EOR-CO2 Injection, Remaining Gas in Place Estimation, Material Balance Method, Computerized Monitoring & Processing System Design, Magnetic Field Controlling, Comparative Risk Evaluation & Sensitivity Analysis, Critical Production Rate for Bottom Water Coning in the Majed (EE-Pool) Reservoir, Oil Pipeline Black Powder Removal, Oil Field Water Shutoff Treatment Methods, Water-Based Mud Rheological & Fluid Loss Control, Empirical Equation, Water-Flooding Performance, Sandstone Reservoirs, Reservoir Fluid Properties, Mathematical Modelling, Directional Permeability Anisotropy, Drilling Operational Efficiency & Well Cost Reduction, Infill Drilling Program, Drilling Efficiency and Ultra-mud System Optimization. Further, he is also well-versed in various petroleum software such as the MBAL (Reservoir Engineering Toolkit), KAPPA-Saphir (Well Testing), KAPPA-Rubis (Reservoir Simulation), CMG (Reservoir Simulation), Merak Peep (Economic Evaluation and Production Decline Analysis) and Monte Carlo Simulation.

During Dr. Saad's career, he gained his thorough practical experience through several challenging positions such as the **Senior Lecturer**, **Head** of Petroleum Engineering Department, **Head** of Chemical Engineering Department, **Head** of the Union of Faculty Members, **Assistant Professor**, **Teaching Assistant**, **Researcher** and **Academic Coordinator** from various international well-renowned companies such as the **University** of Wyoming, Colorado School of Mines, American University of Ras Al Khaimah, Australian College of Kuwait, Sirt University and Bright Star University of Technology.

Dr. Saad has PhD and Master degrees in Petroleum Engineering from the University of Wyoming and Colorado School of Mines, USA, respectively as well as Master degrees in Petroleum Economics & Management and Reservoir Geosciences & Engineering from the Instituit Francias du Petrole, France and a Bachelor degree in Petroleum Engineering. Further, he is a Certified Instructor/Trainer, a Certified Internal Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM) and a member of the American Society of Petroleum Engineering (SPE), Society of Petroleum Resources Economists (SPRE), Association of Professional Engineering of Libya, Libyan Society of Earth Science and the Environment Friends Association of Libya. Moreover, he is an author/co-author and published various research papers in local and international scientific journals and conferences. He has further delivered numerous trainings, courses, workshops, seminars and conferences globally.

DE0210-4D - Page 4 of 7

Course Fee

US\$ 6,750 per Delegate + **VAT**. This rate includes H-STK[®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation

Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1:	Monday, 30 th of September 2024
0730 – 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Some Basic Concepts in Reservoir Engineering Calculation of Hydrocarbon Volumes • Fluid Properties • Fluid Pressure Regimes • Oil Recovery: Recovery Factor • Volumetric Gas Reservoir Engineering
0930 - 0945	Break
0945 - 1100	Some Basic Concepts in Reservoir Engineering (cont'd)Application of the Real Gas Equation of State• Gas Material Balance:Recovery Factor• Hydrocarbon Phase Behaviour
1100 – 1230	PVT Analysis for Oil Definition of the Basic PVT Parameters • Collection of Fluid Samples • Determination of the Basic PVT Parameters in the Laboratory and Conversion for Filed Operating Conditions
1230 - 1245	Break
1245 - 1420	PVT Analysis for Oil (cont'd)Alternative Manner of Expressing PVT Laboratory Analysis ResultsComplete PVT Analysis
1420 – 1430	Recap Using this Course Overview, the Instructor(s) will Brief Participants about the Topics that were Discussed Today and Advise Them of the Topics to be Discussed Tomorrow
1430	Lunch & End of Day One

Day 2:	Tuesday, 01 st of October 2024
0730 - 0830	Production Injection Analysis
0830 - 0930	Material Balance Applied to Oil Reservoirs
	<i>General Form of the Material Balance Equation for a Hydrocarbon Reservoir</i> •
	The Material Balance Expressed as a Linear Equation • Reservoir Drive
	Mechanisms • Solution Gas Drive
0930 - 0945	Break
0945 - 1100	Material Balance Applied to Oil Reservoirs (cont'd)
	Gascap Drive • Natural Water Drive • Compaction Drive & Related Pore
	Compressibility Phenomena

DE0210-4D - Page 5 of 7

1100 – 1230	Darcy's Law & Applications
	Darcy's Law: Fluid Potential • Sign Convention • Units: Units Conversion •
	Real Gas Potential • Datum Pressures • Radial Steady State Flow: Well
	Stimulation • Two-Phase Flow: Effective & Relative Permeabilities • The
	Mechanics of Supplementary Recovery
1230 - 1245	Break
1245 - 1420	The Basic Differential Equation for Radial Flow in a Porous Medium
	<i>Derivation of The Basic Radial Flow Equation</i> • <i>Conditions of Solution</i> • <i>The</i>
	<i>Linearization of Equation 5.1 for Fluids of Small & Constant Compressibility</i>
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Two

Day 3:	Wednesday, 02 nd of October 2024
0730 - 0930	Well Inflow Equations for Stabilized Flow Conditions
	Semi-Steady State Solution • Steady State Solution • Example of the
	Application of the Stabilized Inflow Equations • Generalized Form of Inflow
	Equation Under Semi Steady State Conditions
0930 - 0945	Break
0945 – 1100	The Constant Terminal Rate Solution of The Radial Diffusivity Equation
	& Its Application to Oilwell Testing
	The Constant Terminal Rate Solution • The Constant Terminal Rate Solution
	for Transient & Semi Steady State Flow • Dimensionless Variables •
	Superposition Theorem: General Theory of Well Testing • The Matthews,
	Brons, Hazebroak Pressure Build-Up Theory
	The Constant Terminal Rate Solution of The Radial Diffusivity Equation
	& Its Application to Oilwell Testing (cont'd)
1100 – 1230	Pressure Build-Up Analysis Techniques • Multi-Rate Drawdown Testing •
	The Effects of Partial Well Completion • Some Practical Aspects of Well
	Surveying • Pressure Surveys • Afterflow Analysis
1230 - 1245	Break
	Real Gas Flow: Gas Well Testing
	Linearization & Solution of the Basic Differential Equation for the Radial Flow
	of a Real Gas • The Russell, Goodrich, Et. Al, Solution Technique •
	Comparison of the Pressure Squared & Pseudo Pressure Solution Techniques •
1245 – 1420	Non-Darcy Flow • Determination of the Non-Darcy Coefficient F • The
	<i>Constant Terminal Rate Solution for the Flow of A Real Gas</i> • <i>General Theory</i>
	of Gas Well Testing • Multi-Rate Testing of Gas Wells • Pressure Build-Up
	Testing of Gas Wells • Pressure Build-Up Analysis in Solution Gas Drive
	Reservoirs • Summary of Pressure Analysis Techniques
	Recap
1420 - 1430	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today and Advise Them of the Topics to be
	Discussed Tomorrow
1430	Lunch & End of Day Three

DE0210-4D - Page 6 of 7

Day 4:	Wednesday, 03 rd of October 2024
0730 - 0930	Natural Water Influx
	The Unsteady State Influx Theory of Hurst & Van Everdingen • Application
	of the Hurst, Van Everdingen Water Influx Theory in History Matching • The
	Approximate Water Influx Theory of Fetkovitch for Finite Aquifers
0930 - 0945	Break
	Natural Water Influx (cont'd)
0945 – 1100	Predicting The Amount of Water Influx • Application of Influx Calculations to
	Steam Soaking
	Immiscible Displacement
1100 1020	Physical Assumptions & Their Implications \bullet The Fractional Flow Equation \bullet
1100 - 1250	Buckley-Leverett One Dimensional Displacement • Oil Recovery Calculations
	Displacement Under Segregated Flow Conditions
1230 - 1245	Break
	Immiscible Displacement (cont'd)
	Allowance for The Effect of a Finite Capillary Transition Zone in Displacement
1245 - 1345	Calculations • Displacement in Stratified Reservoirs • Displacement When
	There is a Total Lack of Vertical Equilibrium • The Numerical Simulation of
	Immiscible, Incompressible Displacement
	Course Conclusion
1345 - 1400	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course

<u>Practical Sessions</u> This practical and highly-interactive course includes the real-life case studies and exercises:-

Course Coordinator Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

DE0210-4D - Page 7 of 7

