

COURSE OVERVIEW FE0890 Technical Integrity & Engineered Safety in Process Plant

Course Title

Technical Integrity & Engineered Safety in Process Plant

Course Reference

FE0890

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs

Course Date/Venue

Session(s)	Date	Venue
1		Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE
2		Fujairah Meeting Room, Grand Millennium Al Wahda Hotel, Abu Dhabi, UAE

Course Description

This practical and highly-interactive course includes real-life case studies and exercises where participants will be engaged in a series of interactive small groups and class workshops.

The aim of the course is to give the participants a comprehensive understanding of the various aspects of Technical Integrity and Engineered Safety in Process Plant. The course combines current industry practices with engineering methods and applicable codes and standards. The course will cover the development and implementation of facility integrity and technical audits; the scope and key elements of mechanical integrity, reliability and engineered safety in process plants; and the causes and implications of industrial failures.

Further, the course will also cover the consequences of pressure and storage equipment failures in vessels, exchangers, heaters, storage tanks and piping; the codes, standards and specifications used in safety design and the integration of the operability and maintainability in design; the types and various applications used in engineering material and ensure that the guidelines in the selection methodology are being met; and the methodology and design considerations of piping system in pressure and mechanical integrity.

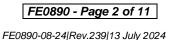
Moreover, the course will discuss the principles, guidelines and best practices in safeguarding systems and its safety systems key design considerations; investigating the various failures in piping, rotating equipment, pressure vessels, piping and boilers and its causes, reliability improvement and prevention; and the correct procedures involved in the inspection, testing, repair and monitoring of piping systems and equipment in refineries, petrochemical and process plants.

Participants of the course will be able to identify and assess hazards; carryout risk analysis and HAZOP studies; integrate the safety management plan using the various risk analysis processes; implement the principles of fitness-for-service and engineering critical assessment; employ the best maintenance strategies and programs; rerate piping and pressure vessels; ensure the correct application of the various methods of troubleshooting plant equipment and piping system; and carryout integrity audits.

At the completion of the course, the participants will gain enough knowledge that will help them to improve their efficiency in managing facility integrity in a professional manner. The course will help delegates to develop and implement a mechanical integrity program for critical process equipment. The course manual will be valuable for future reference.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-


- Get certified as a "Certified Technical Integrity Auditor"
- Develop and implement a facility integrity and technical audits
- Apply the scope and key elements of mechanical integrity, reliability and engineered safety in process plants and find the causes and implications of industrial failures
- Estimate the consequences of pressure and storage equipment failures in vessels, exchangers, heaters, storage tanks and piping
- Implement the codes, standards and specifications used in safety design and integrate the operability and maintainability in design
- Determine the types and the various application used in engineering material and ensure that the guidelines in the selection methodology are being met
- Employ the methodology and design considerations of piping system in pressure and mechanical integrity
- Apply the principles, guidelines and best practices in safeguarding systems and discuss its safety systems key design considerations
- Investigate the various failures in piping, rotating equipment, pressure vessels, piping and boilers and be able to explain its causes, reliability improvement and prevention
- Apply the correct procedures involved in the inspection, testing, repair and monitoring of piping systems and equipments in refineries, petrochemical and process plants
- Identify and assess hazards and carryout risk analysis and HAZOP studies and integrate the safety management plan using the various risk analysis processes

- Implement the principles of fitness-for-service and engineering critical assessment including fracture mechanics, flaw characterization, stability, etc
- Employ the best maintenance strategies and programs and rerate piping and pressure vessels
- Ensure the correct application of the various methods of troubleshooting plant equipment and piping system and carry out integrity audits

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides a wide understanding and deeper appreciation of technical integrity and engineered safety in process plant for facility integrity engineers, inspection engineers, corrosion engineers, facility engineers, reliability engineers, design engineers, maintenance engineers, safety engineers, loss prevention engineers and those engaged in the development and implementation of mechanical integrity programs for critical process equipment.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

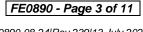
20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Fee

US\$ 5,500 per Delegate + VAT. This rate includes H-STK® (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Accommodation


Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

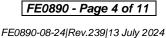
Course Certificate(s)

(1) Internationally recognized Competency Certificates and Plastic Wallet Cards will be issued to participants who completed a minimum of 80% of the total tuition hours and successfully passed the exam at the end of the course. Successful candidate will be certified as a "Certified Technical Integrity Auditor". Certificates are valid for 5 years.

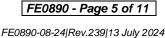
Recertification is FOC for a Lifetime.

Sample Certificates

The following are samples of the certificates that will be awarded to course participants:-



(2) Official Transcript of Records will be provided to the successful delegates with the equivalent number of ANSI/IACET accredited Continuing Education Units (CEUs) earned during the course.



Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 3.0 CEUs (Continuing Education Units) or 30 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

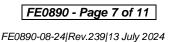
Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Brett Heuchert is a Certified API/AWS/ASNT Inspector & **Inspection Engineer** with extensive industrial experience in the Oil & Gas, Refineries, Petrochemical and Power industries. His expertise lies extensively in the areas of installation fabrication, construction. erection. maintenance, operation, rating, repair, alteration, reconstruction, pigging, integrity assessment, flaw evaluation, fitness-for-service (FFS) of Piping, Piping Inspection, Pipelines, Damage

Mechanisms, Mechanical & Metallurgical Failure Mechanisms, Pressure Vessels, Pressure & Leak Testing, Storage Tank, Welding Technology, Metallurgy, Corrosion, Mechanical Integrity Assessment, Vibration Analysis, Positive Material Identification (PMI), Hydro-Testing, Non Destructive Testing (NDT), Refractory Inspection. He is an international expert in several codes and standards relating to pipelines, piping, pressure vessel, tanks, welding and corrosion such as API, ASME, ASNT, AWS, CWB, CGSB, ABSA and NACE. He is currently the Senior Inspector of CNRL Horizon Crude Facility wherein he is responsible for the inspection of all exchanger related components and supervise repairs as per API 510, CNRL specs and relevant codes.

Throughout his career life, Mr. Heuchert has provided significant contributions to the industries by acquiring key positions such as being the Senior Inspector, Quality Control Manager, Engineering Manager, QA Supervisor, Plant Inspector, Technical Mentor, Quality Control Inspector, Quality Assurance Supervisor, Lead QC Inspector, QA Inspector, QA Integrity Inspector, QC Inspector, Foreman, Pipe Fitter, Welder, Technician and Apprentice for international companies such as CNRL Horizon Crude Facility, Capital Power Corporation, ADNOC Technical Institute, Nexen, Edmonton Exchanger, Conpac Construction Ltd., Shell Canada Ltd., Acuren Group Inc.-Irving Oil Refinery, Gas Inspection Inc., Stinger Welding Inc.-Husky Oil Refinery, PML Inspection Services Inc., Carber Testing Inc. and UA Local 488 PipeFitter & Welder Union.


Mr. Heuchert is a Certified Instructor/Trainer. Certified Verifier/Assessor/Trainer by the Institute of Leadership & Management (ILM), Certified Welding Inspector (AWS), Certified Corrosion & Materials Professional (API 571), Certified Pressure Vessel Inspector (API 510), Certified Piping Inspector (API 570), Certified Aboveground Storage Tank Inspector (API 653), Certified Welding Inspection & Metallurgy Professional (API 577), Certified Refractory Installation Quality Control (API 936), Certified Level II Inspector by the Canadian Welding Bureau (CWB) as well as a Certified Level II Technician in Magnetic Particle, Liquid Penetrant and X-Ray Florescence by the Canadian General Standards Board (CGSB).

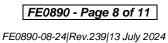
Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

рау т		
0730 - 0800	Registration & Coffee	
0800 - 0815	Welcome & Introduction	
0815 - 0830	PRE-TEST	
	Overview of Technical Integrity	
0830 – 0900	Definition, Spcope, & Key Elements-Hardware & Software Issues, Peopleware-	
	Sound People Management • Potential Threats to Technical Integrity in a	
0030 - 0900	Hazardous Environment • Regulatory Requirements-SH&E, OSHA, SEVESO	
	II • Life Cycle Implications-Design/ Operation/Maintenance,	
	Regulatory/Industrial Interface, Training/Staff Development, Networking	
0000 0020	Industrial Failures-Catastrophic Failures Do Happen	
0900 – 0930	Statistics • Typical Examples • Causes & Implications • Learning	
0930 - 0945	Break	
	Estimation of Consequences of Pressure & Storage Equipment Failures -	
	Vessels, Exchangers, Heaters, Storage Tanks, & Piping	
0945 - 1115	Types of Hazards - Release of Hazardous Substances, Bleves, Fractures,	
	Explosions, Vapor Cloud Explosions • Guidelines & Procedures for Quantifying	
	Consequences	
	Safety in Design I	
1115 – 1230	Project Development & Design Bases • Appropriate Codes, Standards,	
1113 - 1230	Specifications, Industrial Practices • Safeguarding Premises • Calculation	
	Methods, Heuristics	
1230 – 1245	Break	
	Safety in Design II	
1245 - 1315	Quality Control in Design • Inherent Safety • Reliability & Availability	
	Premises	
	Integration of Operability & Maintainability in Design	
	Health, Safety & Environmental Considerations • Roles & Responsibilities of	
1315 - 1345	Engineering/Operation/Maintenance • Operating Strategies - Run Length,	
1515 - 1545	Shifts • Startup, Shutdown, Emergency Operating Procedures • Steam-Out &	
	Flushing Procedures • Isolation, Blanking, Vents & Drains • Human Factor:	
	Training Modules, Operator Training	
1345 - 1420	Workshop I-Failure Consequences	
	Case Studies & Worked Examples	
1420 – 1430	Recap	
1430	Lunch & End of Day One	

Day 2


0730 - 0830	Design Codes, Standards, Specifications, & Best Practices Fit-For-Purpose Facilities • Business-Focused Facilities • Liability & Due Diligence
0830 - 0930	Engineering Materials I Types & Application • Imperfections & Defects • Specifications & Standards
0930 - 0945	Break
0945 - 1030	Engineering Materials II Behaviour of Metals Under Stress • Degradation Processes • Selection Methodology & Guidelines

1030 - 1115	Design of Major Plant Equipment-Methodology & Key Considerations
	Pressure Vessels • Heat Exchangers • Fired Heaters & Boilers
1115 – 1230	Design of Piping Systems I-Pressure Integrity
	Methodology & Key Considerations
1230 - 1245	Break
1245 – 1330	Design of Piping Systems II-Mechanical Integrity
	Special Design Considerations-Dynamic & Transients Loadings • Piping
	Flexibility & Supports
1330 - 1420	Workshop II-Failures Due to Design Deficiencies
	Case Studies
1420 - 1430	Recap
1430	Lunch & End of Day Two

Dav 3

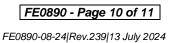
Day 3	
0730 - 0830	Safeguarding Systems I-Guidelines & Best Practices
	Principles • Guidelines & Best Practices • Documentation • Safeguarding
	Systems Integrity–Design
	Safeguarding Systems II–Safety Systems Key Design Considerations
0830 - 0930	Safeguarding Safety Systems-SIL • Relief & Depressuring Systems •
	Safeguarding Systems Integrity & Effectiveness
0930 - 0945	Break
	Failures In Piping & Equipment Pressure Vessels, Piping & Boilers
0945 - 1030	Degradation Processes • Failures in Pressure Equipment • Piping System
	Vibration & Failure
1030 – 1115	Failures In Rotating Equipment
1030 - 1113	Causes • Monitoring & Analysis • Reliability Improvement
1115 1220	Failure Prevention
1115 – 1230	FMEA • Causal Analysis
1230 - 1245	Break
1245 - 1330	Testing & Monitoring
	NDT Methods • Inspection, Testing & Repair Regulations, Codes, & Practices
	• Evaluation of Inspection Data
1330 – 1420	Workshop III-Failures Due to Improper Operation & Maintenance
	Case Studies
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4

0730 - 0830	Hazard Identification & Assessment	
0830 - 0930	Risk Analysis, Assessment & Management	
	Probability Basics • Probabilistic Risk Assessment Concepts & Methodology •	
	Fault Tree & Event Tree Analysis • Quantitative Risk Assessment Concepts &	
	Methodology	
0930 - 0945	Break	
0945 – 1100	Integrated Safety Management Plan	
	Hazard & Effect Management Plan • Bow-Tie Process • Risk Matrix •	
	Determining Acceptability of Risk	

1100 – 1230	Hazard & Operability (HAZOP) Reviews	
	Process & Guidelines	
1230 - 1245	Break	
1245 – 1315	Management of Change	
	Change Control Policy & Procedures • Process Changes • Plant Changes •	
	Assessment & Authorization • Documentation • Illustrative Change Control	
	Procedure	
1315 – 1345	Workshop IV	
1515 - 1545	Case Studies - Failures Due to Improper Management of Change System	
1345 – 1420	Workshop IV (cont'd)	
	Examples of HAZOP Reviews	
1420 - 1430	Recap	
1430	Lunch & End of Day Four	

Day 5


Day 5		
0730 - 0830	Fitness-For-Service/Engineering Critical Assessments	
	API RP 579 Fitness-For-Service • Fracture Mechanics & Mode of Failure of	
	Material • Flaw Characterization, Growth, Stability • Factors of Safety •	
	Disposition versus Repair	
0020 0020	Maintenance Strategies & Programs	
0830 – 0930	Risk-Based Inspection • Reliability-Centered Maintenance	
0930 - 0945	Break	
0945 - 1030	Rerating Piping & Pressure Vessels	
1030 - 1115	Engineering Information & Systems Management	
	Troubleshooting Plant Equipment & Piping Systems	
	Guidelines & Best Practices • Resonance & Vibration • Excessive Thrusts &	
1115 – 1200	Moments on Connected Equipment • Leakage at Joints • Excessive Piping Sag,	
	Disengagement of Piping from Supports • Interference with Expansion &	
	Contraction	
1200 – 1215	Break	
1215 – 1245	Technical Integrity Audits	
	Guidelines & Procedures • Checklists • Implementation Plans	
1245 - 1300	Workshop IV-Examples of HAZOP Reviews	
1300 - 1315	Course Conclusion	
1315 - 1415	COMPETENCY EXAM	
1415 - 1430	Presentation of Course Certificates	
1430	Lunch & End of Course	

Practical Sessions
This practical and highly-interactive course includes the following real-life case studies and exercise:-

Course Coordinator

Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

